Как определить прочность бетона
Udinart.ru

Строительный портал

Как определить прочность бетона

Прочность бетона

Прочность бетона

Содержание:

Прочность бетона – это техническая характеристика, определяющая его способность противостоять механическому и химическому воздействию.

Для чего нужно знать прочность бетона?

Практически при любом строительстве, будь то жилые здания, или хозяйственные постройки, используется бетон. В зависимости от вида и этапа строительства, требования, предъявляемые к строительным материалам, могут существенно изменяться. Так, например, для заливки фундаментов и возведения стен используются различные марки бетона. Марка бетона в свою очередь определяется его прочностью.
Прочность бетона – это наиболее важная характеристика, определяющая свойства и эксплуатационные качества бетонных конструкций и элементов строительных сооружений.

Знание показателей прочности бетона позволит избежать многих нежелательных последствий для строительных сооружений. Например, использование бетона, имеющего недостаточный уровень прочности, может привести к снижению эксплуатационных качеств постройки, появлению трещин, преждевременному разрушению и досрочному выходу здания из строя.
Определение прочности бетона является также обязательной процедурой для застройщиков перед сдачей здания в эксплуатацию.

Как определяется прочность бетона?

Прочность бетона определяется в лабораторных условиях при помощи специальных приборов на отобранных пробах и контрольных образцах. Все испытания регламентируются строительными ГОСТами, принятыми для определенного вида бетона.
Прочность бетона также можно определить непосредственно в процессе строительства на строительной площадке. Подобные испытания проводятся для контроля качества возведенных элементов сооружения.

Существует несколько методов определения прочности бетона. В зависимости от характера воздействия различают следующие способы:

Разрушающие методы предполагают разрушение образца, изготовленного из контрольной пробы бетонной смеси, а также взятого из бетонной поверхности при помощи алмазного бура.

При этом методе исследования происходит раздавливание кубиков или выпиленных цилиндров бетона под испытательным прессом. Нагрузка увеличивается непрерывно и равномерно до момента разрушения контрольного образца. Полученная в результате цифра критической нагрузки фиксируется и по ней происходит дальнейший расчет прочности бетона.

Разрушающий метод считается наиболее точным для определения прочности бетона. Обследование здания методом раздавливания бетонных проб, определяет прочность бетона на сжатие. Согласно действующим в настоящее время СНиПам, он является обязательным перед сдачей здания в эксплуатацию.

Неразрушающие методы не требуют получения образцов и их последующего разрушения. Испытания проводятся при помощи различных приборов и инструментов.

В зависимости от используемых приспособлений различают следующие неразрушающие методы исследований:

  • частичного разрушения;
  • ударного воздействия;
  • ультразвукового обследования.

Метод частичного разрушения основан на местном воздействии на бетонную поверхность и приводит к незначительному ее повреждению.

Различают следующие методы частичного разрушения:

  • на отрыв;
  • скалыванием;
  • отрыв со скалыванием.

Метод отрыва состоит в закреплении на участке бетонной поверхности металлического диска при помощи специального клея и последующего его отрыва. Усилие, необходимое для разрушения бетона при подобном методе фиксируется и используется в дальнейших вычислениях прочности.
Метод скалывания заключается в механическом воздействии скользящего характера на ребро конструкции и регистрации усилия, при котором происходит откалывание его участка.

Метод отрыва со скалыванием характеризуется большей точностью, по сравнению с остальными методами частичного разрушения. Суть его состоит в закреплении на участке бетонной конструкции анкерных устройств и последующего их отрыва от поверхности.
Методы ударного воздействия основаны на применении к бетонной поверхности силового воздействия ударного типа.

Различают 3 метода определения прочности ударом:

  • метод ударного импульса;
  • упругого отскока;
  • пластической деформации.

Метод ударного импульса достаточно прост в использовании и состоит в регистрации силы удара и возникающей при этом энергии.

Метод упругого отскока не менее прост и заключается в определении величины отскока бойка ударника от бетонной поверхности.

Метод пластической деформации состоит в силовом воздействии на исследуемую область приборов с закрепленными на их ударной поверхности штампов шарикового или дискового типа. По глубине полученных в результате удара или давления отпечатков определяется прочность бетона.

Метод ультразвукового обследования подразумевает использование прибора, испускающего ультразвуковые волны. При этом определяется скорость ультразвука, проходящего сквозь бетонную конструкцию. Преимущество подобного метода – в возможности исследования не только поверхности бетона, но и его глубинных слоев. Недостаток – в большом проценте погрешности при расчетах.

От чего зависит прочность бетона?

В результате химических процессов, происходящих при взаимодействии бетонной смеси с водой прочность бетона в процессе его застывания увеличивается. Под влиянием различных факторов скорость химических реакций может замедляться и ускоряться. От этого же будет зависеть показатель прочности бетона.

Выделяют следующие основные факторы, влияющие на прочность бетона:

  • активность цемента;
  • процентное содержание цемента;
  • соотношение цемента и воды в растворе;
  • технические характеристики и качество наполнителей;
  • качество смешивания составляющих бетонной смеси;
  • степень уплотнения;
  • время, затраченное на застывание раствора;
  • внешние условия (температура воздуха и влажность среды);
  • применение повторного вибрирования.

Наиболее важным фактором, определяющим прочность бетона, является активность цемента. Выяснена и определена прямая зависимость между активностью цемента и прочностью бетона. Чем выше активность, тем более прочными получаются бетонные изделия и наоборот, чем она ниже, тем меньше прочность и качество бетона.

Процентное содержание цемента не менее важная величина, определяющая показатели прочности. Увеличение количества цемента в смеси ведет к повышению прочности бетонных конструкций. Уменьшение – к ее снижению. При этом существует следующая закономерность: увеличение прочности происходит лишь до определенного момента. В дальнейшем показатели прочности бетона возрастают незначительно, а вот его нежелательные качества – усадка и ползучесть, увеличиваются.

Соотношение цемента и воды влияет на прочность вследствие физических особенностей застывающей бетонной смеси. Одной из них является способность бетона связывать лишь 15-25% входящей в его состав воды. В бетонном же растворе, как правило, присутствует от 40 до 70% воды, необходимой для облегчения укладывания бетона в форму. Излишек воды приводит к образованию пор в толще бетона, что ведет к снижению его прочности. Отсюда вытекает следующая закономерность: при возрастании величины водоцементного соотношения В/Ц, прочность бетона уменьшается, а при ее уменьшении – увеличивается.

Качество и свойства наполнителей также играют немалую роль в формировании прочности бетона. Наличие органических и глинистых веществ, использование мелкофракционных наполнителей, приводит к снижению прочности. Крупные фракции имеют лучшее сцепление с цементным связующим, и их использование увеличивает прочность бетона.

Качество смешивания и применение вибрирования влияет на степень уплотнения бетонного раствора. От плотности бетона зависит его прочность. Чем плотнее улеглись частицы бетонного состава, тем выше будет прочность бетона.

Внешние условия и время отвердевания бетона – еще один из факторов, определяющих показатели его прочности. Наиболее благоприятной считается температура от 15 до 20С0. Влажность воздуха при этом должна составлять от 90 до 100%. При таких параметрах среды происходит быстрое возрастание прочности бетона и увеличивается время его отвердевания. С течением времени, показатель прочности увеличивается. Его рост прекращается лишь после полного высыхания бетона или его замерзания.

Прочность бетона через 7 суток и 28 дней

Давно выяснена и рассчитана закономерность, при которой происходит возрастание прочности бетона в зависимости от времени его застывания. В соответствии с ней наибольший показатель предела прочности – 100%, бетон набирает на 28-е сутки застывания. На 7-е сутки бетон показывает 60-80% своей потенциальной прочности. На 3-и сутки соответственно 30%. По ГОСТу, именно в эти дни рекомендовано производить испытания бетонных кубиков.

Изменение прочности бетона с течением времени происходит по следующей логарифмической зависимости:
Rb(n) = Rb(28) lgn / lg28, где Rb – прочность бетона, n-количество дней, а lg-десятичный логарифм возраста бетона.
Расчет прочности по формуле дает лишь приблизительные показатели прочности. Важно учесть также, что подобным образом можно определить прочность бетона начиная с 3-х дневного возраста.

Прочность бетона по маркам

Марка бетона указывает предел его прочности на сжатие и выражается в кгс/см2 (килограмм-силы на см2). Обозначается она буквой М, а цифра после буквы указывает среднее, приблизительное значение прочности.
В строительстве чаще всего используются бетоны следующих марок: М100, М150, М200, М250, М300, М350, М400, М450, М500.

Показатели прочности бетона по маркам:

  • М100 — показатель прочности равен 98,23 кгс/см2
  • М150 – от 130,97 до 163,71 кгс/см2
  • М200 – 196,45 кгс/см2
  • М250 – 261,93 кгс/см2
  • М300 – от 294,68 до 327,42 кгс/см2
  • М350 – от 327,42 до 360,18 кгс/см2
  • М400 – 392,9 кгс/см2
  • М450 – 458,39 кгс/см2
  • М500 – 523,87 кгс/см2

Марка бетона и его прочность зависит от количества цемента, входящего в его состав. Чем больше содержание цемента, тем выше будет марка и наоборот, чем ниже марка, тем меньше цемента содержит бетонная смесь.

Применение бетона в зависимости от его прочности

Наиболее важной характеристикой бетона является его прочность на сжатие, определяемая маркой бетонной смеси. Для каждого вида строительных работ используются свои марки бетона.

Бетон марки М100 – разновидность легких бетонов. Применяется на начальных этапах строительства, для подготовки основания под фундамент, заливкой монолитных стен, перед арматурными работами, а также в дорожном строительстве при устройстве бордюров.

М150 – имеет несколько более высокую прочность, поэтому помимо подготовительных работ, может использоваться для стяжки пола, устройства пешеходных дорог. Возможно его применение в качестве фундамента при строительстве малоэтажных построек. Так же, как и марка М100, является одним из видов легких бетонов.

М200 – наиболее часто используемая в строительстве марка. Обладает достаточно высоким показателем прочности и применяется практически на всех этапах строительных работ. Бетоном, имеющим такую марку, заливают фундаменты, площадки, пешеходные дорожки. Используют его и для устройства лестниц и лестничных пролетов, а также возведения несущих стен. При строительстве дорог, бетоном марки М200 формируют подушку под бордюр.

Читать еще:  Сколько цемента в кубе раствора

М250 – охватывает сферу применения предыдущей марки. Однако вследствие более высокой прочности может также применятся в производстве плит для перекрытий при возведении малоэтажных зданий.

М300 – не менее популярная марка в строительстве, чем бетон марки М200. Из него изготавливаются блоки несущих стен, плиты перекрытий, лестницы, заборы. М300 используется для заливки монолитных фундаментов, площадок и в других подобных работах.

М350 – имеет достаточно высокую прочность. Область применения – изготовление фундаментных плит при возведении многоэтажных зданий, плит перекрытий и опорных балок. Используют марку М350 в монолитном строительстве, при изготовлении аэродромных плит, опорных колонн, бассейнов и подобных изделий.

М400 – сфера применения — изготовление ЖБИ, строительство гидротехнических сооружений и зданий, несущих повышенную, по сравнению с жилыми постройками, нагрузку. Это могут быть многоэтажные торгово-развлекательные комплексы, аквапарки и так далее.

М450 – применяется при возведении плотин, строительстве дамб и метро.

М500 – основная сфера применения – гидротехнические сооружения и железобетонные конструкции.

Прочность бетона – способы определения

Прочность бетона на сжатие, является важнейшей технической характеристикой, регламентируемой действующими нормативными документами: ГОСТ и СНиП. В соответствии с практическими исследованиями 80-85% марочной прочности бетон приобретает на 28 сутки после затворения водой.

Конечно, при этом температура окружающего воздуха должна находиться в пределах 20-25 градусов Цельсия. Максимально же возможная прочность бетонной конструкции достигается через 3-4 года после заливки.

Оценка прочности бетона различными методами

Так как прочность бетона является самой важной характеристикой, от которой зависит прочность сооружения, конструкторами и технологами разработаны и активно применяются следующие варианты испытаний бетона на прочность:

  • Неразрушающие механические методы контроля. Основаны на опосредственной оценке технической характеристики, полученной методами: упругого отскока, удара, и отрыва со скалыванием.
  • Определение прочности бетона ультразвуковым методом. В этом случае используется специальная ультразвуковая установка, которая «просвечивает» проверяемую конструкцию и определяет прочность бетона в зависимости от скорости распространения ультразвуковых волн.
  • Метод разрушающего контроля прочности. Согласно существующим СНиПам разрушающий контроль является обязательным при приемке здания или сооружения в эксплуатацию.
  • Самостоятельный метод определения прочности бетона с помощью подручных материалов и инструментов: молотка, зубила и штангенциркуля.

Перечисленные способы имеют различную степень точности, находящуюся в пределах допускаемой погрешности.

Определение прочности бетона неразрушающими методами

  • Определение прочности с помощью молотка Физделя. При ударе рабочей частью молотка Физделя на поверхности бетона очищенной от посторонних материалов образуется отпечаток в виде лунки определенного диаметра. Величина диаметра, измеренная штангенциркулем, характеризует прочность бетона. Для достоверности результатов производится 12-15 ударов. Для расчета прочности принимается средний диаметр лунки.
  • Определение прочности с помощью молотка Кашкарова. Удар молотком Кашкарова оставляет на поверхности бетона два отпечатка. Один отпечаток остается на исследуемом объекте, второй отпечаток остается на эталоне (бетонном стержне известной прочности). В зависимости от соотношений диаметров отпечатков определяется прочность проверяемого объекта.
  • Прочность бетона неразрушающими методами определяемая с помощью: пистолета ЦНИИСКа, молотка Шмидта и склерометра. Указанные методы основаны на принципе упругого отскока рабочего органа от испытываемого объекта. Величина прочности бетона оценивается по шкале прибора, на которой фиксируются полученные данные.
  • Отрыв со скалыванием. Для проведения испытаний выбирается участок поверхности в теле, которого нет арматурного пояса. Для проверки прочности используются специальные анкерные устройства, внедряемые в толщу бетона. Оценка прочности производится по шкале анкерного устройства.

Определение прочности бетона с помощью ультразвука

Технология использует связь, которая существует между скоростью распространения ультразвуковых импульсов и прочностью бетонной конструкции. Для реализации метода необходимо специальное оборудование, состоящее из генератора ультразвуковых волн, блока управления и датчиков.

Кроме прочности бетона, приборы ультразвукового исследования позволяют определять дефекты, однородность, модуль упругости и плотности толщи исследуемого объекта.

Разрушающие методы определения прочности бетона

В соответствии с требованиями действующего СП 63.13330.2012 г., проверка конструкций разрушающими методами являются обязательными, застройщикам остается выбрать приемлемый способ определения прочности бетона по контрольным образцам из следующего списка:

  • Контроль прочности, осуществляемый специальными прессами, разрушающими контрольные образцы, залитые в специальные формы. Аналогичным способом осуществляется проверка отпускной прочности бетона ГОСТ 18105-2010. «Бетоны. Правила контроля и оценки прочности».
  • Контроль прочности бетона разрушением образцов выпиленных или высверленных из толщи проверяемой конструкции.
  • Контроль прочности методом разрушения образцов изготовленных непосредственно на строительной площадке. В связи с тем, что время и условия набора прочности образцами и время и условия набора прочности залитой конструкцией существенно различаются, данный метод считается относительно достоверным.

Определения прочности бетона своими руками

Более-менее достоверные сведения о прочности залитого бетона можно получить без использования специального оборудования. Для самостоятельных испытаний потребуется следующий инструмент:

  • Слесарный молоток массой ударной части 400-600 граммов.
  • Штангенциркуль с глубиномером.
  • Слесарное зубило средней величины.

При этом показатель прочности бетона – размер следа и глубина проникновения зубила после нанесения удара молотком средней силы.

  • Если след от зубила едва виден, прочность бетона соответствует классу В25.
  • Более глубокая и хорошо видная отметина идентифицирует бетон класса В15-В25.
  • Проникновение зубила в тело материала более чем на 0,5 мм говорит о том, что перед нами бетон класса В10,
  • Проникновение зубила в толщу бетона более чем на 10 мм идентифицирует бетон класса прочности В5.

Несмотря на то, что самостоятельный метод определения прочности бетона весьма простой и очень экономичный, прочность материала особо ответственных конструкций лучше всего определять «научными» способами привлекая соответствующих специалистов оснащенных соответствующим оборудованием.

Класс прочности всех марок бетонов

Заключение

Показатели марки и класса бетонных материалов – это самые важные показатели их сопротивления сжатию и осевой растяжке. В отличии от качеств относительно стойкости к низким температурам, влаге, именно они учитываются в первую очередь при покупке материалов.

Методы определения прочности бетона

Прочность бетона — важнейшая характеристика, которая применяется при проектировании и расчете конструкций для строительства различных сооружений. Она задается маркой М (в кг/см²) или классом В (в МПа) и выражает максимальное давление сжатия, которое выдерживает материал без разрушения.

При определении марочной прочности бетона строительные организации и изготовители конструкций должны руководствоваться требованиями нормативных документов — ГОСТ 22690-88, 28570, 18105-2010, 10180-2012. Они регламентируют методику проведения испытаний, обработку результатов.

Что влияет на прочность?

Затвердевшая в условиях строительной площадки бетонная смесь может давать отличные от лабораторных результаты. Помимо качества цемента и заполнителей на характеристику влияют:

  • условия транспортировки;
  • способ укладки в опалубку;
  • размеры и форма конструкции;
  • вид напряженного состояния;
  • влажность, температура воздуха на всем протяжении твердения смеси;
  • уход за монолитом после заливки.

Качество смеси и ее прочностные характеристики ухудшаются, если при производстве работ совершались грубые нарушения технологии:

  • доставка производилась не в миксере;
  • время в пути превысило допустимое;
  • при заливке смесь не уплотнялась вибраторами или трамбовками;
  • при монтаже была слишком низкая или высокая температура, ветер;
  • после укладки в опалубку не поддерживались оптимальные условия твердения.

Неправильная транспортировка приводит к схватыванию, расслоению и потере подвижности смеси. Без уплотнения в толще конструкции остаются пузырьки воздуха, которые ухудшают качество монолита.

При температуре 15°-25°С и высокой влажности в первые 7-15 суток бетон достигает прочности 70%. Если условия не выдерживаются, то сроки затягиваются. Опасно как охлаждение смеси, так и ее пересушивание. Зимой опалубку утепляют или прогревают, летом поверхность монолита увлажняют, накрывают пленкой.

На заводах ЖБИ осуществляют пропаривание или автоклавную обработку конструкций, чтобы уменьшить время набора прочности. Процесс занимает от 8 до 12 часов.

Чтобы определить, насколько характеристики конструкции соответствуют проектным, а также при обследованиях и мониторинге технического состояния зданий проводят проверку прочности бетона. Она включает лабораторные испытания образцов, неразрушающие прямые и косвенные методы исследования объектов.

Факторы, влияющие на погрешность измерений при контроле и оценке прочности бетона:

  • неравномерность состава;
  • дефекты поверхности;
  • влажность материала;
  • армирование;
  • коррозия, промасливание, карбонизация внешнего слоя;
  • неисправности прибора — износ пружины, слабую зарядка аккумуляторной батареи.

Самый информативный способ проверки бетонных конструкций — изъятие образцов из тела монолита с последующим их испытанием. Такой метод сводит к минимуму ошибки, но достаточно дорог и трудоемок. Поэтому чаще пользуются более доступными исследованиями с помощью приборов, измеряющих зависимые от прочности характеристики — твердость, усилие на отрыв или скол, длину волны. Зная их, можно с помощью переходных формул вычислить искомую величину.

Требования к проверке

С точки зрения заказчика наиболее предпочтительно проводить испытания неразрушающими методами контроля фактической прочности бетона. Сегодня созданы приборы, которые позволяют быстро получить результаты без бурения, высверливания или вырубки образца, портящих целостность конструкции.

Для осуществления контроля и оценки прочности бетона рассматривают три показателя:

  • точность измерений;
  • стоимость оборудования;
  • трудоемкость.

Наиболее дорогими являются испытания кернов на лабораторном прессе и отрыв со скалыванием. Исследования по величине ударного импульса, упругого отскока, пластических деформаций или с помощью ультразвука имеют меньшую затратную часть. Но применять их рекомендуется после установления градуировочной зависимости между косвенной характеристикой и фактической прочностью.

Параметры смеси могут существенно отличаться от тех, при которых была построена градуировочная зависимость. Чтобы определить достоверную прочность бетона на сжатие, проводят обязательные испытания кубиков на прессе или определяют усилие на отрыв со скалыванием.

Если пренебречь этой операцией, неизбежны большие погрешности при контроле и оценке прочности бетона. Ошибки могут достигать 15-75 %.

Читать еще:  Что такое бетонная подготовка

Целесообразно пользоваться косвенными методами при оценке технического состояния конструкции, когда необходимо выявить зоны неоднородности материала. Тогда правила контроля допускают применение неточного относительного показателя.

Как определить прочность бетона?

В производстве материалов и строительстве применяются методы для испытания бетона на прочность:

  • разрушающие;
  • неразрушающие прямые;
  • неразрушающие косвенные.

Они позволяют с той или иной точностью проводить контроль и оценку фактической прочности бетона в лабораториях, на площадках или в уже построенных сооружениях.

Разрушающие методы

Из готовой смонтированной конструкции выпиливают или выбуривают образцы, которые затем разрушают на прессе. После каждого испытания фиксируют значения максимальных сжимающих усилий, выполняют статистическую обработку.

Этот метод, хотя и дает объективные сведения, часто не приемлем из-за дороговизны, трудоемкости и причинения локальных дефектов.

На производстве исследования проводят на сериях образцов, заготовленных с соблюдением требований ГОСТ 10180-2012 из рабочей бетонной смеси. Кубики или цилиндры выдерживают в условиях, максимально приближенным к заводским, затем испытывают на прессе.

Неразрушающие прямые

Неразрушающие методы контроля прочности бетона предполагают испытания материала без повреждений конструкции. Механическое взаимодействие прибора с поверхностью производится:

  • при отрыве;
  • отрыве со скалыванием;
  • скалывании ребра.

При испытаниях методом отрыва на поверхность монолита приклеивают эпоксидным составом стальной диск. Затем специальным устройством (ПОС-50МГ4, ГПНВ-5, ПИВ и другими) отрывают его вместе с фрагментом конструкции. Полученная величина усилия переводится с помощью формул в искомый показатель.

При отрыве со скалыванием прибор крепится не к диску, а в полость бетона. В пробуренные шпуры вкладывают лепестковые анкеры, затем извлекают часть материала, фиксируют разрушающее усилие. Для определения марочной характеристики применяют переводные коэффициенты.

Метод скалывания ребра применим к конструкциям, имеющим внешние углы — балки, перекрытия, колонны. Прибор (ГПНС-4) закрепляют к выступающему сегменту при помощи анкера с дюбелем, плавно нагружают. В момент разрушения фиксируют усилие и глубину скола. Прочность находят по формуле, где учитывается крупность заполнителя.

Внимание! Способ не применяют при толщине защитного слоя менее 20 мм.

Неразрушающие косвенные методы

Уточнение марки материала неразрушающими косвенными методами проводится без внедрения приборов в тело конструкции, установки анкеров или других трудоемких операций. Применяют:

  • исследование ультразвуком;
  • метод ударного импульса;
  • метод упругого отскока;
  • пластической деформации.

При ультразвуковом методе определения прочности бетона сравнивают скорость распространения продольных волн в готовой конструкции и эталонном образце. Прибор УГВ-1 устанавливают на ровную поверхность без повреждений. Прозванивают участки согласно программе испытаний.

Данные обрабатывают, исключая выпадающие значения. Современные приборы оснащены электронными базами, проводящими первичные расчеты. Погрешность при акустических исследованиях при соблюдении требований ГОСТ 17624-2012 не превышает 5%.

При определении прочности методом ударного импульса используют энергию удара металлического бойка сферической формы о поверхность бетона. Пьезоэлектрическое или магнитострикционное устройство преобразует ее в электрический импульс, амплитуда и время которого функционально связаны с прочностью бетона.

Прибор компактен, прост в применении, выдает результаты в удобном виде — единицах измерения нужной характеристики.

При определении марки бетона методом обратного отскока прибор — склерометр — фиксирует величину обратного движения бойка после удара о поверхность конструкции или прижатой к ней металлической пластины. Таким образом устанавливается твердость материала, связанная с прочностью функциональной зависимостью.

Метод пластических деформаций предполагает измерение на бетоне размеров следа после удара металлическим шариком и сравнение его с эталонным отпечатком. Способ разработан давно. Наиболее часто на практике используется молоток Кашкарова, в корпус которого вставляют сменный стальной стержень с известными характеристиками.

По поверхности конструкции наносят серию ударов. Прочность материала определяется из соотношения полученных диаметров отпечатков на стержне и бетоне.

Заключение

Для контроля и оценки прочности бетона целесообразно пользоваться неразрушающими методами испытаний. Они более доступны и недороги по сравнению с лабораторными исследованиями образцов. Главное условие получения точных значений — построение градуировочной зависимости приборов. Необходимо также устранить факторы, искажающие результаты измерений.

Определение прочности бетона: методы и их особенности

Прочность бетона является важнейшей характеристикой, от которой зависят эксплуатационные параметры материала. Под прочностью подразумевают способность бетона противостоять внешним механическим силам и агрессивным средам. Особенно актуальны способы определения этой величины методами неразрушающего контроля: механическими или ультразвуковым.

Правила испытания прочности бетона на сжатие, растяжение и изгиб определяются ГОСТ 18105-86. Одной из характеристик прочности бетона является коэффициент вариации (Vm), который характеризует однородность смеси.

По ГОСТ 10180—67 предел прочности бетона при сжатии определяется при сжатии контрольных кубов с размерами ребер 20 см в 28-суточном возрасте — это так называемая кубиковая прочность. Призменная прочность определяется как 0,75 кубиковой прочности для класса бетона В25 и выше и 0,8 для класса бетона ниже В25

Помимо ГОСТов, требования к расчётной прочности бетона задаются в СНиПах. Так, например, минимальная распалубочная прочность бетона незагруженных горизонтальных конструкций при пролете до 6 метров должна составлять не менее 70% проектной прочности, а свыше 6 метров – 80% проектной прочности бетона.

Механические неразрушающие методы определения прочности бетона

Неразрушающие способы бетона на сжатие основываются на косвенных характеристиках показаний приборов. Испытания прочности бетона проводятся с помощью основных методов: упругого отскока, ударного импульса, отрыва, скалывания, пластической деформации, отрыва со скалыванием.

О том, какие существуют марки бетона по прочности, в этой статье рассказывают специалисты.

Закажите лучший бетон М200 для строительства и изготовления стяжек полов, дорожек, бетонных лестниц.

Рассмотрим виды испытательных приборов механического принципа действия. Таким способом прочность бетона определяется глубиной внедрения рабочего органа прибора в поверхностный слой материала.

Принцип действия молотка Физделя основан на использовании пластических деформаций строительных материалов. Удар молотка по поверхности бетона образует лунку, диаметр которой и характеризует прочность материала. Место, на которое наносятся опечатки, должно быть очищено от штукатурки, шпатлевки, окрасочного слоя. Испытания проводятся локтевыми ударами средней силы по 10-12 раз на каждом участке конструкции с расстоянием между отпечатками не менее 3 см. Диаметр полученных лунок измеряется с помощью штангенциркуля по двум перпендикулярным направлениям с точностью до десятой миллиметра. Прочность бетона определяется с помощью среднего диаметра отпечатка и тарировочной кривой. Тарировочная кривая строится на сравнении полученных диаметров отпечатков и результатов лабораторных исследований на образцах, взятых из конструкции или изготовленных по технологиям, аналогичных примененным.

На свойствах пластической деформации основан и принцип действия молотка Кашкарова. Различие между этими приборами заключается в наличии между молотком и завальцованным шариком отверстия, в которое введен контрольный стержень. Удар молотка Кашкарова приводит к образованию двух отпечатков. Одного — на поверхности обследуемой конструкции, второго — на эталонном стержне. Соотношение диаметров получаемых отпечатков зависит от прочности исследуемого материала и контрольного стержня и не зависит от скорости и силы удара молотка. По среднему соотношению диаметров двух отпечатков с помощью тарировочного графика устанавливают прочность бетона.

Пистолеты ЦНИИСКа, Борового, молоток Шмидта, склерометр КМ, оснащенный стержневым ударником, работают, основываясь на принципе упругого отскока. Измерения величины отскока бойка проводятся при постоянной величине кинетической энергии металлической пружины и фиксируются указателем на шкале прибора. Взвод и спуск бойка происходят автоматически при соприкосновении ударника и испытуемой поверхности. Склерометр КМ имеет специальный боек определенной массы, который с помощью предварительно напряженной пружины с заданной жесткостью ударяет по металлическому ударнику, прижатому другим концом к обследуемой поверхности.

Метод испытания на отрыв со скалыванием позволяет определить прочность бетона в теле бетонного элемента. Участки для испытания подбираются таким образом, чтобы в этой зоне не было арматуры. Для проведения исследований используют анкерные устройства трех типов. Анкерные устройства первого типа устанавливаются в конструкцию при бетонировании. Для установки второго и третьего типов анкерных устройств предварительно подготавливают шпуры, высверливая их в бетоне.

Ультразвуковой метод измерения прочности бетона

Принцип действия приборов ультразвукового контроля основывается на связи, которая существует между скоростью распространения ультразвуковых волн в материале и его прочностью.

В зависимости от способа прозвучивания разделяют две градуировочные зависимости: «скорость распространения волн — прочность бетона», «время распространения ультразвуковых волн — прочность бетона».

Метод сквозного прозвучивания в поперечном направлении применяется для сборных линейных конструкций — балок, ригелей, колонн. Ультразвуковые преобразователи при таких испытаниях устанавливаются с двух противоположных сторон контролируемой конструкции.

Поверхностным прозвучиванием испытывают плоские, ребристые, многопустотные плиты перекрытия, стеновые панели. Волновой преобразователь устанавливается с одной стороны конструкции.

Для получения надежного акустического контакта между испытуемой конструкцией и рабочей поверхностью ультразвукового преобразователя используют вязкие контактные материалы типа солидола. Возможна установка «сухого контакта» с использованием конусных насадок и протекторов. Ультразвуковые преобразователи устанавливают на расстоянии не менее 3 см от края конструкции.

Способы уплотнения бетонной смеси — здесь описано, какие они бывают и какой выбрать.

Цена бетона М400 по этой ссылке, в нашем каталоге.

Приборы для ультразвукового контроля прочности состоят из электронного блока и датчиков. Датчики могут быть раздельными или объединенными для поверхностного прозвучивания.

Скорость распространения ультразвуковой волны в бетоне зависит от плотности и упругости материала, наличия в нем пустот и трещин, отрицательно влияющих на прочность и другие качественные характеристики. Следовательно, ультразвуковое прозвучивание предоставляет информацию о следующих параметрах:

  • однородности, прочности, модуле упругости и плотности;
  • наличии дефектов и особенностях их локализаций;
  • форме А-сигнала.

Прибор записывает и преобразует в визуальный сигнал принимаемые ультразвуковые волны. Оснащенность контрольного оборудования цифровыми и аналоговыми фильтрами позволяет оптимизировать соотношение сигнала и помех.

Методы разрушающего контроля прочности бетона

Каждый застройщик может выбирать самостоятельно методы неразрушающего контроля, но согласно существующим СНиПам разрушающий контроль является обязательным. Способов организации выполнения требований СНиПов существует несколько.

Читать еще:  Как стелить линолеум на бетонный пол

  • Контроль прочности бетона может проводиться на специально изготовленных образцах. Применяется этот метод при производстве сборных железобетонных конструкций и для выходного контроля БСГ (бетонной смеси готовой) на стройплощадке.
  • Прочность бетонов может контролироваться на образцах, которые были получены способами выпиливания и вырубывания из самой конструкции. Места взятия проб определяются с учетом снижения несущей способности в зависимости от напряженного состояния. Целесообразно, чтобы эти места указывались самими проектировщиками в проектной документации.
  • Испытания образцов, изготовленных на месте проведения работ в условиях, определенных конкретным технологическим регламентом. Однако укладка бетона в кубы для проведения последующих испытаний, его твердение и хранение значительно отличаются от реальных условий укладки, уплотнения и твердения рабочих бетонных смесей. Эти различия существенно снижают достоверность получаемых таким способом результатов.

Самостоятельное измерение прочности бетона

Профессиональные методы определения прочности бетона дороги и не всегда доступны. Существует способ самостоятельного проведения обследования на прочность бетонных конструкций.

Для испытаний потребуется молоток весом 400-800 г и зубило. По приставленному к поверхности бетона зубилу наносится удар средней силы. Далее определяется степень повреждения, нанесенного поверхностному слою. Если зубило оставило лишь небольшую отметину, то бетон можно отнести к классу прочности В25. При наличии более значительной зазубрины бетон можно отнести к классам В15-В25. Если зубило проникнет в тело конструкции на глубину менее 0,5 см, то образец можно отнести к классу В10, если более 1 см — к классу В5. Класс или марка бетона по прочности — это основной показатель качества бетонной смеси, которые определяют среднюю прочность бетона. Например, средняя прочность бетона В30 (М400) составляет 393 кгс / см2.

Ориентировочно определить прочность бетона Rб в на 28 сутки в МПа можно по формуле Боломея-Скрамтаева, которая является основным законом прочности бетона. Для этого необходимо знать марку примененного цемента — Rц и цементно-водное соотношение — Ц/В. Коэффициент А при нормальном качестве заполнителей равен примерно 0,6.

При этом набор прочности бетона во времени подчиняется формуле

n = Марочная прочность *(lg(n) / lg(28)) , где n не менее 3 дней,

на 3 сутки бетон набирает около 30% марочной прочности, на 7 сутки — 60-80%, а 100% предел прочности достигается на 28-е сутки. Дальнейшее повышение прочности бетона происходит, но очень медленно. Согласно СНиП 3.03.01-87, уход за свежим бетоном продолжается до набора 70% прочности или до другого срока распалубливания.

Методы самостоятельного определения прочности бетонных конструкций просты и экономичны. Однако в случае строительства важных объектов целесообразно обратиться к услугам специализированных лабораторий.

Определение прочности бетона

Прежде чем начать строительство небольшого дома или крупной многоэтажки, мастера и компании обязаны провести испытание стройматериала на прочность. Да, даже один из самых популярных и востребованных строительных материалов — бетон — требует проверки. Несмотря на то, что бетонную смесь считают одним из мощных и долговечных материалов для строительства, он все же подвержен неблагоприятному воздействию внешней среды. Испытание бетона на стойкость — отличный способ, чтобы определить механические характеристики материала. Такой контроль позволит в дальнейшем времени прогнозировать поведение бетонных сооружений при нагрузках и природных катаклизмах.

Общие сведения

Определение прочности бетона проводиться только после наблюдения показателей, что определяют механические характеристики смеси. Среди основных типов макроструктуры бетона выделяют плотную, плотную с пористым заполнением, ячеистую и зернистую структуры. В зависимости от нее и будет определяться способность будущего устройства конструкции выдерживать нагрузки и оказывать им сопротивление.

Прочность цементной смеси также зависит от следующих факторов:

  • качества и активности вяжущих элементов;
  • структуры бетона и гранулометрического состава заполнителей;
  • их формы, размеров и прочности;
  • количества воды на единицу объема.

Не стоит забывать и о степени уплотнения смеси, уходе за ней. Хорошему цементу можно не только «похвастаться прочностью». Он не должен крошиться, трескаться, колоться или расслаиваться. В первую очередь при выборе бетонной смеси советуем обратить внимание на ее состав. Помните, чем выше марка выбранного материала, тем большие нагрузки сможет выдерживать строение. Да, за такой продукт придется заплатить больше, но помните, на безопасности и сроке службы будущего строения экономить нельзя.

Также в бетоне должны присутствовать модификаторы, это специальные вещества, которые увеличивают прочность и скорость застывания смеси в конструкциях. Для хорошей устойчивости бетонной конструкции ее нужно дополнительно армировать. Армирование — это погружение металлических прутов или проволок в бетонный материал.

Не стоит и забывать про условия, в которых происходит заливка бетонного раствора. Позаботьтесь о подходящей температуре и влажности воздуха, теплоизоляции. Бетон должен не быть переувлажненным, но также не высохнуть слишком быстро. Нужно определить оптимальное время, чтобы цемент успел качественно прореагировать с водой.

Проверка стандартных образцов

Прочность бетонной смеси неразрывно связана со многими факторами. Она определяется несколькими методами, также необходим профессиональный прибор, который будет измерять технические характеристики. Методы определения прочности бетона разные. Рассмотрим самые популярные.

Испытание цемента на крепость проводят по контрольным образцам — это кубики или цилиндры из раствора. Бетон замешивают в строгих пропорциях и дают ему высохнуть 28 суток. После этого подготовленные контрольные образцы помещают в специальные приборы, например, пресс, и сжатием пытаются их разрушить.

Еще один популярный разрушающий метод — исследование кернов. Из уже готового застывшего бетонного сооружения вырубают или пытаются выбурить монолит. Кусок такого продукта отправляют на лабораторные тесты для испытания бетона (например, разрушающее испытание бетона под прессом).

Обычно монолит бурят с помощью алмазных корок, это позволяет провести процесс без вреда для конструкции. Но помните, что такие разрушающие методы исследования бетона на прочность дорогие. Также образец сложно извлечь, а если сделать это неправильно, то можно серьезно навредить конструкции.

Для определения устойчивости можно использовать неразрушающие методы. Суть этой работы заключается в том, что специалисты измеряют предел прочности бетона, а другие показатели, которые связаны между собой и влияют на этот фактор. Способы проведения неразрушающего контроля требуют больших трудоемких затрат, при этом они не всегда точные. Но все же большинство массовых и частичных инженерных задач можно решить неразрушающими методами.

Как подготовить образцы?

Для инспекции бетона на прочность используют несколько кубиков (их заливают в стандартные формы) из смеси и проводят с ним специальную обработку. Помните, что при выборе материала для тестирования в него запрещено дополнительно вносить или удалять любые наполнители. Заполнение бетоном форм должно происходить за полчаса после отбора, а извлечение — без использования воды или прочих жидкостей. Измерение прочности нужно проводить только через несколько дней. Образцы для испытания не должны иметь дефектов, трещин, расслоений, а наплывы раствора, что образовались после отливки в форму нужно удалить при помощи абразива.

Методы

  • Молоток Кашкарова.

На сжатие. Испытание смеси на прочность проводят по разным технологическим схемам. Например, контроль прочности бетонного куба на сжатие проводится в несколько этапов. Сначала нужно установить образец в нижнюю плиту пресса, а верхняя будет постоянно опускаться. Плиты будут давить на образец до тех пор, пока бетонный куб при сжатии не разрушится. Но то, как расколется бетон должно соответствовать нормам, указанным в специальных документах. Если что-то пошло не так и результат не совпал с прогнозируемым, то такой метод не учитывается.

  • На растяжение. Можно провести испытание при помощи растяжения упругого элемента. «Подопытный» элемент помещают в испытательную машину и оказывают давление. При этом особое внимание уделяют измерению параметров упругого отскока твердых предметов и деформации бетона в месте удара.
  • Молоток Кашкарова. Опытные специалисты говорят, что нужно пользоваться приборами и методами проверки на прочность цементной смеси в комплексе и объединять результаты в единую картину. Если обратить больше внимания на метод определения прочности бетона неразрушающим контролем, то можно отметить, что он поможет установить надежность смеси в целой конструкции. Нужно ударить по бетону, а потом обязательно замерить отскок частиц и твердых предметов от поверхности, параметры деформации бетона в месте удара. Для нанесения удара обычно используют специальный «молоток Кашкарова». В местах исследования поверхность конструкции должна быть ровной, а удары нужно наносить через листы копировальной белой бумаги.
  • Отрыв. Отдельную группу представляет метод отрыва со скалыванием (на отрыв и скол). Если бетон проверяют на отрыв, то на его поверхность наклеивают диск из стали, который соединяют с механизмом, который будет работать до тех пор, пока не оторвет кусок бетона. Измерения результатов нужно записывать и сравнивать.
  • Скалывание. Метод скалывания заключается в том, чтобы от внешнего угла конструкции отколоть кусок цемента. Сразу же отметим, что для хорошей работы во время скалывания нужен крепки перфоратор или дрель. Такой неразрушающий контроль определяет прочность прочность по усилию, которое необходимо для скалывания участка конструкции, расположенному на ребре с внешней стороны.
  • Ультразвук. Ультразвуковое применяют для монолитных конструкций. Такой лабораторный тип испытания заключается в том, с какой скоростью будут распространяться звуковые колебания в бетоне. Проводят специальными приборами. Тут измеряется время, за которое распространяется ультразвук в бетоне.
  • Вернуться к оглавлению

    Заключение

    Определение прочности бетона будет эффективным и точным при условии, если мастер четко исполнит требования и правила проведения таких проверок. Чтобы достичь максимально точного результата в испытании бетона, нужно проведение в комплексе несколько методов контроля.