Что такое каркас здания
Udinart.ru

Строительный портал

Что такое каркас здания

Что такое каркас здания

Каркас – это несущая конструкция здания, состоящая из вертикальных конструкций (колонн), горизонтальных конструкций (ригелей) и связей. Каркас воспринимает все вертикальные и горизонтальные нагрузки, действующие на здание, и передает их на фундамент (выполняет только несущую функцию).

В основном каркас применяется при проектировании промышленных и общественных зданий, но может быть использован и в жилых зданиях.

При проектировании каркасных зданий колонны располагаются на определенных расстояниях друг от друга, кратных строительному модулю:

пролет (L) – это расстояние между продольными рядами колонн в направлении работы горизонтальных несущих конструкций каркаса (ригелей);

шаг (B) – это расстояние между поперечными рядами колонн.

В зданиях ячейкового типа шаг и пролет несильно отличаются друг от друга -сетка колонн;

LB = 6х6 м или 6х9 м.

В зданиях пролетного типа размер пролета преобладает над размером шага колонн;

L = 12, 18, 24, 30, 36, 48, 60 м и более; В = 6, 12 м.

Каркасы классифицируются по следующим признакам:

1)по конструктивной схеме:

а) рамная схемаприменяется при проектировании зданий небольшой этажности. При этом все вертикальные и горизонтальные нагрузки, действующие на здание, воспринимаются поперечными и продольными рамами, которые образованы жесткими стыками колонн и ригелей.

б) связевая схема позволяет применять колонны и ригели меньшего сечения, по сравнению с рамной схемой. Стыки между ними выполняются шарнирными, а не жесткими. При этом вертикальные нагрузки воспринимаются колоннами каркаса, а горизонтальные – системой продольных и поперечных связей, установленных между колоннами.

в) рамно-связевая схема сочетает в себе рамы и диафрагмы жесткости. Горизонтальные и вертикальные нагрузки воспринимают и рамы и диафрагмы, а распределение усилий между ними происходит в зависимости от соотношения жесткостей.

2)по расположению колонн:

а) здания с полным каркасом, когда колонны устанавливаются по всей площади здания. При этом колонны воспринимают все нагрузки от покрытия, перекрытий и навесных стен.

б) здания с неполным каркасом, когда колонны устанавливаются только внутри здания, а по периметру выполняются несущие стены на самостоятельных фундаментах.

а) одноэтажные каркасы;

б) многоэтажные каркасы;

4)по количеству пролетов:

а) однопролетный каркас применяется при проектировании одноэтажных общественных или промышленных зданий с большими внутренними объемами (кинотеатры, спортивные сооружения, промышленные цеха и т. п.).

б) многопролетный каркас используется, как правило, при проектировании многоэтажных жилых, общественных и промышленных зданий.

а) железобетонный каркас применяется при проектировании одноэтажных и многоэтажных гражданских и промышленных зданий. По способу возведения железобетонные каркасы делятся на три типа:

Сборный железобетонный каркас применяется в основном для возведения общественных и промышленных зданий. На рис. 3.26 и 3.27 показаны типовые железобетонные колонны и ригели, применяемые в сборном каркасе.

Монолитный железобетонный каркас более трудоемок в изготовлении, но он позволяет выполнить разнообразные архитектурные формы, которые невозможны при сборном каркасе. Поэтому данный тип каркаса применяется при проектировании жилых и общественных зданий.

а– одноэтажные колонны с обычными консолями;

б – одноэтажные колонны со скрытыми консолями;

в – двухэтажные колонны с обычными консолями;

г– двухэтажные колонны со скрытыми консолями;

д – двухветвевые колонны одноэтажных промышленных зданий с мостовыми кранами

Сборно-монолитный железобетонный каркас применяется в основном при реконструкции зданий или при выполнении пристроек к существующим зданиям. При этом монолитный бетон используется при замоноличивании стыков сборных элементов, добетонировании ослабленных колонн или ригелей или при выполнении монолитных перекрытий в зданиях со сборными колоннами.

б) металлические каркасы применяются в основном при проектировании одноэтажных промышленных зданий и разделяются на два типа:

– каркасы из алюминиевых сплавов.

Стальной каркасобладает многими достоинствами. По сравнению с железобетонным каркасом он характеризуется значительно меньшей массой при равной несущей способности, высокой технологичностью, легкостью усиления конструкций. Стальной каркас используют при проектировании промышленных зданий большой высоты (более 18 м), с мостовыми кранами большой грузоподъемности (более 50 тонн), а также в неотапливаемых зданиях.

На рис. 3.28 показаны основные типы колонн стального каркаса.

Каркас из алюминиевых сплавов имеет массу в 3 раза меньшую, чем стальной при той же прочности, легко формуется и обрабатывается. Алюминиевые сплавы применяются ограниченно из-за высокого коэффициента температурного расширения, ухудшения механических свойств при повышении температуры и большой стоимости.

в) деревянный каркас применяется при проектировании одноэтажных гражданских и промышленных зданий. При этом конструктивные элемента каркаса изготавливаются из многослойной клееной древесины, брусьев, досок или бревен. К достоинствам деревянного каркаса относится небольшая масса, малая теплопроводность и температурное расширение, стойкость в агрессивных химических средах, легкость изготовления и обработки. Недостатки – малая стойкость к воздействию огня и влажности.

На рис. 3.29 показаны конструкции деревянных каркасов, применяемых при возведении одноэтажных промышленных зданий.

г) смешанный каркасприменяется при проектировании промышленных зданий. В этом случае колонны выполняются железобетонными, т. к. этот материал хорошо работает на сжатие, а покрытие – из стальных или деревянных ферм или балок (хорошо работают на изгиб).

Связи в каркасных зданиях могут быть двух видов: диафрагмы жесткости в виде железобетонных панелей сплошного сечения и металлические решетчатые связи.

Диафрагмы жесткости применяются в гражданских и промышленных зданиях с железобетонным каркасом, а металлические связи – в основном в промышленных зданиях с железобетонным, металлическим или деревянным каркасом.

Вертикальные диафрагмы жесткости проектируются на всю высоту здания, начиная от обреза фундамента. Они представляют собой железобетонные стенки, которые устанавливаются между колонн и соединяются с ними сваркой закладных деталей. Совместная работа диафрагм жесткости и колонн обеспечивается путем замоноличивания горизонтальных и вертикальных швов между ними бетоном высокого класса прочности. Вертикальные диафрагмы жесткости проектируются внутри здания в продольном и поперечном направлениях с шагом 24 ¸ 36 м.

Горизонтальные диафрагмы жесткости образуются путем сварки и замоноличивания стыков между плитами перекрытий зданий. Благодаря этому образуется единый диск перекрытия, который воспринимает горизонтальные нагрузки в здании и передает их на колонны. Горизонтальные диафрагмы жесткости проектируются для обеспечения общей жесткости каркаса и устанавливаются через несколько этажей здания.

Выбор материала каркаса производится в результате комплексного анализа всех положительных и отрицательных качеств, которые должны обеспечивать прочность, надежность, долговечность и технологичность возведения здания.

Каркасы зданий в гражданском строительстве

Каркас представляют собой систему, состоящую из стержневых несущих элементов — вертикальных (колонн) и горизонтальных балок (ригелей), объединенных жесткими горизонтальными дисками перекрытий и системой вертикальных связей.

Основное компоновочное преимущество каркасных систем в свободе планировочных решений, в связи с редко расставленными колоннами, имеющие укрупненные шаги в продольном и поперечном направлениях. Системе присуще четкое разделение на несущие и ограждающие конструкции. Несущий остов (колонны, ригели и диски перекрытий) воспринимает все нагрузки, а наружные стены выполняют роль ограждающих конструкций, иногда воспринимая только собственный вес ( самонесущие стены). Это дает возможность применять материалы прочные и жесткие — для несущих элементов каркаса, и тепло — звукоизоляционные материалы — для ограждающих. Использование высокоэффективных материалов позволяет добиться снижение веса здания, что положительно сказывается на статических свойствах здания.

Каркасы, применяемые в гражданском строительстве, можно классифицировать по следующим признакам:

Рамная система

Рамная система каркасных зданий обладает большой жесткостью, устойчивостью и создает максимальную свободу планировочных решений. Система обеспечивает надежность в восприятии нагрузок и равномерность деформаций рам, расположенных в здании в продольном и поперечном направлениях. Недостаток (при сборном железобетонном каркасе) — сложность в унификации узловых соединений из-за разных величин усилий в них по высоте здания. Такое решение железобетонного каркаса наряду со стальным находит применение в сложных грунтовых условиях и в сейсмических районах.

При изготовлении рамного каркаса из сборного железобетона применяется разрезка его несущих элементов на Г-Т-Н — образные элементы, позволяющая перенести узловые соединения в наименее напряженные участки — места нулевых изгибающих моментов от вертикальных нагрузок.

Рамно-связевая система

Рамно-связевая система обеспечивает пространственную жесткость за счет совместной работы поперечных рам, вертикальных диафрагм жесткости и перекрытий, выполняющих функцию жестких горизонтальных дисков. Вертикальные нагрузки передают на каркас как на рамную систему. Горизонтальные нагрузки, действующие перпендикулярно плоскости рам, воспринимают вертикальные диафрагмы жесткости и диски перекрытий, а нагрузки, действующие в плоскости рам, воспринимает рамно-связевой блок, состоящий из вертикальных диафрагм жесткости и рам каркаса.

В результате проведенных теоретических исследований доказано, что рамно-связевая система удовлетворяет условию минимального расхода материала в несущих вертикальных конструкциях при нулевой жесткости поперечных рам, то есть когда система превращается в чисто связевую.

Связевая система

Связевая система все вертикальные нагрузки передает на стержневые элементы каркаса (колонны и ригели), а горизонтальные усилия воспринимают жесткие вертикальные связевые элементы (стеновые диафрагмы и ядра жесткости), объединенные между собой дисками перекрытий. В связевом каркасе ограничена прочность и жесткость стыков ригелей с колоннами. Узлы конструируют податливами с помощью стальных связей («рыбок»), ограничивающих защемление.

Внедрение связевой системы в производство элементов сборного железобетонного каркаса позволило провести широкую унификацию его основных элементов (колонн и ригелей) и их узловых соединений.

Разработана номенклатура индустриальных железобетонных изделий серии 1.020-1 (рис. 16.2), позволяющая возводить как гражданские, так и промышленные каркасно-панельные здания любой конфигурации и этажности.

Читать еще:  Как высушить подполье в частном доме?

В состав номенклатуры серии помимо колонн и ригелей, включены панели перекрытий, диафрагм жесткости и наружных стен.

Из унифицированных элементов могут быть запроектированы каркасы с продольным и поперечным расположением ригелей.

Габаритные схемы

Габаритные схемы компонуются на следующих условиях:

  • оси колонн, ригелей и панелей диафрагм жесткости совмещены с модульными осями здания;
  • шаг колонн в направлении пролета плит перекрытий равен 3,0; 6,0; 7,2, 9,0 и 12,0 м.
  • шаг колонн в направлении пролета ригелей соответствует 3,0; 6,0; 7,2 и 9,0м,
  • высота этажей в соответствии с назначением и укрупненным модулем ЗМ составляет 3,3; 3,6; 4,2; 6,0 и 7,2 м.

Кроме того для квартирных и специализированных жилых домов (пансионаты, гостиницы, общежития и т.п.) высота этажей принимается равной 2,8 м.

Компоновка диафрагм жесткости может быть разнообразной, но предпочтительнее устройство пространственных связевых систем открытого или замкнутого сечений.

Конструктивные элементы

Колонны имеют высоту в 2-4 этажа, что позволяет в зданиях, с соответствующей этажностью, применять бесстыковые колонны. Наряду с бесстыковыми колоннами в номенклатуру включены следующие типы колонн: — нижние высотой в два этажа и расположением низа колонны ниже нулевой отметки на 1,1м.; средние — высотой в три-четыре и верхние в один-три этажа. Предусмотрены колонны сечением 30×30 см для зданий высотой до 5-ти этажей и колонны сечением 40×40см для всех остальных. Колонны выпускаются двухконсольнымии и одноконсольными. Двухконсольные колонны устанавливают по средним и крайним рядам при навесных панелях наружных стен. Одноконсольные колонны располагают по крайним рядам при самонесущих наружных стенах и по средним рядам при одностороннем примыкании стен-диафрагм жесткости в лестничных клетках. Стык осуществляется на сварке выпусков арматуры с последующим омоноличиванием и расположением его выше плоскости консоли на 1050 мм.

Ригели — таврового сечения с полкой понизу для опирания плит перекрытия, что уменьшает его конструктивную высоту. Стык ригеля с колонной выполняет со скрытой консолью и приваркой к закладным деталям консоли и колонны (частичное защемление).

Перекрытия — многопустотные плиты высотой 220 мм и пролетом до 9,0м,. Плиты типа 2Т применяют для пролетов 9 и 12м. Элементы перекрытий разделяют на рядовые и связевые (плиты распорки). Связевые плиты перекрытия устанавливают между колоннами в направлении перпендикулярном ригелям, обеспечивая их устойчивость,

Перекрытия испытывают поперечный изгиб от вертикальных нагрузок и изгиб в своей плоскости от горизонтальных (ветровых, динамических) воздействий.

Необходимая жесткость горизонтального диска перекрытия, собираемого из сборных железобетонных элементов, достигается установкой связевых плит-распорок между колоннами, сваркой закладных соединительных элементов и устройством шпоночных швов из цементного раствора между отдельными плитами. Полученный жесткий горизонтальный диск, воспринимая все нагрузки, включает в совместную работу вертикальные диафрагмы жесткости.

Стены — диафрагмы жесткости монтируют из бетонных панелей высотой в этаж, толщиной 140мм. и длиной, соответствующей расстоянию между колоннами в пределах, которых они установлены. При шаге колонн 7,2 и 9,0м стены-диафрагмы проектируют составными из двух-трех панелей, с координационными размерами по ширине 1,2, 3,0 и 6,0 м. Они могут быть глухими или с одним дверным проемом. Элементы диафрагм жесткости между собой и элементами каркаса соединяют сваркой закладных деталей, не менее чем в двух местах по каждой стороне панели с последующим замоноличиванием.

Шаг диафрагм определяется расчетом, но не превышает 36,0 м.

Панели наружных стен могут быть запроектированы самонесущими или ненесущими (навесными) конструкциями, (рис. 16.3). Разрезка стен на панели — двухрядная. В номенклатуру входят поясные простеночные, под карнизные, парапетные, цокольные панели.

Панели самонесущих стен устанавливают по цементно-песчаному раствору на цокольные или простеночные панели и крепят поверху к закладным деталям колонн. Панели ненесущих стен навешивают на ригели, консоли или опорные металлические столики колонн и закрепляют в плоскости перекрытия.

Привязка панелей самонесущих и несущих стен к каркасу единая — с зазором 20 мм между наружной гранью колонны и внутренней гранью панели наружной стены.

Изоляция стыков панелей решена по принципу закрытого стыка.

Московская строительная индустрия создала серию КМС-К1, также основанную по принципу работы связевой системы.

Компоновка каркаса здания может осуществляться как с продольным, так и поперечным расположением ригелей (рис. 16.4).

Компактные в плане отапливаемые здания длиной до 150 м проектируют без температурных швов. Здания с изрезанным очертанием плана, приводящее к ослаблению горизонтальных дисков перекрытий, расчленяют на температурные блоки, длина которых увязана с членением объемной формы здания, но не превышает 60 м.

Как и в серии 1.020.1 каркас KMC-KI собирают из колонн, ригелей, плит перекрытий, панелей жесткости и навесных панелей наружных стен.

Колонны — выполняют одно- и двух-этажными, единого сечения 400×400 мм, а их несущая способность меняется с изменением марок бетона и процента армирования переходом от гибкой (стержни) к жесткой (стальные профили) арматуре. В серии предусмотрены колонны рядовые, фасадные и колонны с вылетом консолей до 1,2 или 1,8 м., служащие опорами для плит балконов и лоджий.

Стык колонны располагают на 710 мм выше плиты перекрытия, что упрощает монтаж. При монтаже колонн применяют специальные кондукторы, обеспечивающие соосность. Соединение осуществляется ванной сваркой плоских торцов колонн, с последующей инъекцией цементного раствора.

Ригели — таврового сечения высотой 450, 600 и 900 мм (последний для пролетов в 12,0 м). Колонну соединяют с ригелем при помощи его опирания на скрытую (в высоте ригеля) консоль и с частичным защемлением установленной по верхней полки ригеля специальной фасонки — «рыбки », а также сваркой с закладными элементами консоли колонны. Значения воспринимаемых таким узлом изгибающих моментов и растягивающих усилий ограничены пределом текучести « рыбки». Поэтому в расчетах при восприятии вертикальных нагрузок защемление ригеля на опоре не учитывают, рассматривая его как шарнирное соединение.

Различают ригели рядовые и фасадные. Ригель фасадный имеет Z-образную форму, которая диктуется особенностью его работы — опирание плит перекрытий на нижнюю полку с одной стороны и навеской наружных стеновых панелей на верхнею полку с другой стороны.

Перекрытия — выполняют из многопустотных настилов высотой в 220 мм. Настилы различают в соответствии с размещением в плане — рядовые, фасадные, настилы-распорки, сантехнические и доборные.

Для создания единого диска перекрытия боковые поверхности настилов имеют шпоночные углубления, которые (после их раскладки) замоноличивают, создавая шпоночные швы, воспринимающие сдвигающие усилия.

Стены жесткости — проектируют из железобетонных панелей высотой на этаж и толщиной в 180 мм. Они имеют одну или две полки для опирания настилов перекрытий. Соединение с несущими элементами каркаса осуществляют при помощи стальных сварных связей числом не менее двух по каждой стороне.

Панели наружных стен — могут иметь горизонтальную или вертикальную разрезку по фасадной плоскости здания (рис. 16.5).

При двухрядной (горизонтальной) разрезки панели наружных стен подразделяют на поясные (ленточные), простеночные и угловые.

Координационные размеры панелей наружных стен горизонтальной разрезки по длине соответствуют шагу колонн, а по высоте составляют — 1,2; 1,5; 1,8 и 3,0 м. Простеночные панели могут быть высотой в — 1,5; 1,8 и 2,1 м, а шириной кратны модулю 300 мм.

При вертикальной разрезке — все размеры панелей по длине и высоте кратны модулю 300 мм.

Узел опирания панелей наружных стен унифицирован для разных систем разре-зок на панели фасадных плоскостей. Панели опирают на несущую конструкцию перекрытия (ригель, или настил) на глубину в 100 мм и приваривают при помощи закладных и соединительных элементов на расстоянии 600 мм в плане от оси колонны. Верх панели крепят к колонне, так же с помощью сварки соединительных элементов.

Горизонтальные стыки панелей наружных стен осуществляются в четверть с нахлесткой в 75 мм. Изоляция вертикальных и горизонтальных сопряжений панелей выполняется по принципу закрытого стыка.

Система позволяет создать многовариантные объемно-планировочные решения за счет применения колонн с консолями больших вылетов (1,2-1,8 м) для создания лоджий, консольных ригелей с вылетом до 3,0 м, образуюипгх выступающие объемы. Возможно устройство зальных помещений с пролетами в 18,0-24,0 м. Разнообразие архитектурных композиций зданий достигается применением двухрядной (горизонтальной) и вертикальной разрезки , так же различных вариантов защитно-отделочных слоев наружных стеновых панелей.

Конструктивные решения зданий предприятий общественного питания.

Визуальное впечатление от места, где человек решил отобедать, играет не последнюю роль. Архитектурные особенности фасада, или всего здания, могут стать настоящей визитной карточкой для ресторана, и некоторые образцы строительного искусства просто просятся в путеводители. Они являются настоящими достопримечательности этих мест.

Материальной же основой, определяющей визуальное восприятие заведения у посетителей, являются дизайнерские и конструктивные решения, которые применяются при строительстве нового объекта. В современном строительстве конструктивное решение здания предприятия общественного питания выбирается, исходя из задумки автора ресторанного проекта и условия обеспечения наиболее рациональной технологии работы предприятия (с учетом имеющейся строительной базы).

Здания предприятий общественного питания выполняются по двум основным конструктивным схемам: каркасной и бескаркасной.

Бескаркасные здания

Бескаркасные здания выполняют с несущими наружными и внутренними кирпичными стенами. Они не имеют колонн. Железобетонные плиты перекрытий опираются на наружные и внутренние стены, которые передают нагрузки здания через свои фундаменты на основание. Бетонные и железобетонные элементы здания – плиты перекрытий, покрытия и фундаменты, элементы лестниц изготавливают на заводах. Степень предварительной заводской готовности меньше, чем у описанных ниже зданий каркасной конструкции. В зданиях такой конструкции сложнее осуществить рациональное планировочное решение. На их сооружение затрачивается больше строительных материалов, трудоемкость их выше, чем у каркасных зданий.

Читать еще:  Саморезы для дерева какие лучше?

Бескаркасные здания с несущими кирпичными стенами используют для сооружения предприятий вместимостью менее 50 мест, в том числе пристроенных и встроенных в бескаркасные здания такой конструкции другого назначения (жилые дома и пр.).

Здания каркасной конструкции

Здания каркасной конструкции могут быть с полным и неполным каркасом.

Здания с полным каркасом целиком собираются из готовых железобетонных и бетонных элементов заводского изготовления: фундаментов, колонн, ригелей (балок), плит перекрытий и покрытий, лестничных маршей и площадок, панелей наружных и внутренних стен и перегородок. В этих зданиях нагрузки от собственной массы конструкций, людей и оборудования воспринимаются каркасом (ригели и колонны) и через колонны передаются их фундаментами на основание – грунт под зданием. Наружные панельные стены не воспринимают нагрузок здания. Они крепятся к периферийным (у наружных стен) колоннам здания. В этом случае масса панелей воздействует на основание через колонны и их фундаменты.

Здания с неполным каркасом

Здания с неполным каркасом имеют несущие кирпичные наружные стены, которые сооружаются на стройплощадке. У них отсутствуют периферийные колонны у наружных стен, а имеются только колонны внутреннего несущего каркаса. Ригели и плиты перекрытия, перекрытия в таких зданиях опираются частично на наружные несущие нагрузки стены, частично на каркас (ригели и колонны). При этой схеме частично нагрузки от собственной массы строительных конструкций, массы людей и оборудования воспринимается наружными стенами, частично колоннами и передаются через их фундаменты на основание. В таких зданиях применяются те же железобетонные элементы заводского изготовления (колонны, ригели, плиты перекрытия и др.), что и в зданиях с полным каркасом.

Полносборные каркасные здания являются предпочтительными и преимущественным типом зданий предприятий общественного питания вместимостью 50 и более мест.

Здания с неполным каркасом и кирпичными наружными стенами используются при тех же размерах предприятий, но когда предъявляются определенные архитектурные требования к его фасадам (нетиповые решения).

Габариты каркасных зданий в плане определяются размерами пролета (расстояния между опорами балок–ригелей) и шага (расстояния между опорами плит перекрытия, т.е. балками–ригелями). Эти расстояния называют разбивочной сеткой здания (или сеткой колонн) и обозначают как произведение пролета на шаг, выраженное в метрах, например, 6х6 м; 9х6 м; 7,2х6 м и т.д. На чертежах планов здания через геометрические центры колонны проводят осевые линии. Расстояние между горизонтальными осевыми линиями является пролетом, а между вертикальными – шагом. Горизонтальные оси маркируют буквами, а вертикальные – цифрами. Для здания, как правило, должна применяться сетка разбивочных осей с одним размером пролета и шага. Изменение размера пролета или шага в здании допускается лишь крайнем случае.

Фрагмент плана здания заключенный между двумя смежными горизонтальными и вертикальными осями называют конструктивно–модульной ячейкой (КМЯ) здания. ЕЕ площадь получают путем умножения длины пролета на размер шага, например 6х6 = 36 м².

Рекомендуемые размеры сетки колонн для стандартных железобетонных изделий заводского изготовления даны в таблице, где указана площадь КМЯ (серия 1,020–1).

Основные сведения о каркасных зданиях

Каркасное здание – это здание, в котором основой несущего остова является каркас, состоящий из системы фундаментов, колонн, ригелей, плит перекрытий и элементов жесткости – связей, диафрагм или ядер жесткости. Основными строительными материалами для устройства каркасов являются сборный или монолитный железобетон (для зданий массового строительства), сталь (для уникальных, высотных или крупных промзданий) и дерево (для малоэтажных гражданских зданий).
По характеру работы каркасы подразделяются на три разновидности: рамную, связевую и рамно-связевую (рис. 55).

Рис. 55. Каркасы:
I – виды каркасных зданий :а – одноэтажное однопролетное; б, и, г – многоэтажные, двух-, трех- и многопролетные: б – с консолями; в, г – без консолей;
II – компоновочные схемы каркасных зданий :а – рамная; б – рамно-связевая; в – связевая; г – каркасно-ствольная .

Рамная схема – это элементы каркаса, жестко соединенные в конструктивных узлах в устойчивую и жесткую пространственную схему, воспринимающую вертикальные и горизонтальные усилия.

Связевая схема – это схема, при которой горизонтальные усилия воспринимаются жесткими перекрытиями, диафрагмами и ядрами жесткости. Вертикальные усилия воспринимаются колоннами и фундаментами. Соединения вертикальных и горизонтальных элементов при этом принимается условно шарнирными.

Рамно-связевая схема представляет собой комбинацию рамных и связевых схем. При этом в одном направлении жесткость обеспечивается вертикальными элементами жесткости (диафрагмами или связями), а в другом – самой рамой.

Для гражданских зданий применяют в основном сборный железобетонный каркас. Для рамного каркаса применяют разрезку на Г-, Т-, Н-, П-образные плоские элементы. Для связевого каркаса применяются прямолинейные элементы (рис. 56).

Рис. 56. Способы членения каркаса на элементы:
а – двухэтажные колонны и однопролетные ригели; б – Г-образные и Т-образные колоны и ригели-ставки;
в – многоэтажные однопролетные рамы; г – Ж-образные рамы; д – двухпролетные многоэтажные рамы;
е – одноэтажные колонны и однопролетные ригели; ж – Н-образные рамы; и – П-образная рама;
к – одноэтажная двухпролетная рама.

Фундаменты под колонны каркасных зданий устраиваются, как правило, из сборных железобетонных блоков стаканного типа.

Сборные железобетонные колонны каркасных зданий выполняются обычно сечением 300х300 и 400х400 мм с одной или несколькими консолями, а также с вынесенными консолями. По высоте колонны изготавливаются на один или два этажа (рис. 57).

Рис. 57. Колонны каркасов:

I – одноэтажные колонны; II – двухэтажные колонны; III – пример размещения
закладных деталей (показаны штриховкой) в колонне унифицированного каркаса;а – фасадные и рядовые колонны с обычными консолями; б – фасадные, рядовые и колонны лоджий со скрытыми консолями; в – фасадные и рядовые колонны с вынесенными консолями: г – колонны одноэтажной разрезки (с платформенным стыком).

Ригели, воспринимающие нагрузку от междуэтажных перекрытий и передающие ее на колонны, в зависимости от перекрываемого пролета и расположения в здании назначаются различных сечений: прямоугольного, таврового, в виде обратного тавра и т.д. В случае опирания плит перекрытий на боковые полки ригелей экономится высота этажа и здания в целом (рис. 58).

Рис. 58. Ригели каркасов:
I – сечения; II, III – общие виды: а – парный прямоугольного сечения;
б – одиночный прямоугольного сечения; в – тавровый; г, д – рядовые ригели в виде перевернутого тавра; е, ж, и, к, л – варианты фасадных ригелей; м – коридорный ригель; н, о, п – варианты лестничных ригелей.

Перекрытия каркасных зданий выполняются из сплошных, пустотных или ребристых железобетонных панелей. При этом часть плит выполняет роль связей или распорок, которые укладывают по осям колонн. Рядовые панели укладывают между связевыми панелями (рис. 59).

Рис. 59. Диафрагмы жесткого каркаса:
I – вертикальные: а – фрагмент диафрагмы жесткости;
б – стенка жесткости каркаса; 1 – колонна; 2 – стенка жесткости;3 – элементы стыков; 4 – шпонки; 5 – крайние стержни арматуры стенки;6 – выпуск арматуры для соединения с колонной; 7 – настил;
II – горизонтальные: а – узел соединения настилов-распорок с ригелями;б, в, г – связевые элементы перекрытия пустотные, ребристые и фасадные;1 – колонна; 2 – ригель; 3 – связевая панель; 4 – рядовые панели.

Вертикальные диафрагмы жесткости проектируют на всю высоту здания, начиная от фундамента. Элементы диафрагм имеют поэтажную разрезку и представляют собой глухие железобетонные стенки с полками поверху для опирания плит перекрытия. С колоннами диафрагмы соединяются сваркой закладных деталей, а стыки замоноличиваются.

Наружные стеновые панели могут опираться на ригели каркаса (в случае продольного их расположения), на крайнюю панель перекрытия или непосредственно на колонну (рис. 60).


Рис. 60. Варианты опирания наружных панелей на каркас:
а – крепление к колоннам; б – опирание на продольные ригели; в – опирание на перекрытие;
1 – ограждающая панель; 2 – колонна; 3 – перекрытие; 4 – ригель;5 – консоль; 6 – закладные детали.

Не нашли то, что искали? Воспользуйтесь поиском:

Что такое каркас здания

КАЧЕСТВЕННО

БЫСТРО

SEO оптимизация

адаптивная верстка

Ремонт в регионах

  1. Главная
  2. Строительство
  3. Каркасные дома
  4. Каркасы одноэтажных зданий

Основные элементы каркаса — рамы. Они состоят из колонн и несущих конструкций покрытий — балок или ферм, длинномерных настилов и пр. Эти элементы соединяют в узлах шарнирно с помощью металлических закладных деталей, анкерных болтов и сварки. Рамы собирают из типовых элементов заводского изготовления. Другие элементы каркаса — фундаментные, обвязочные и подкрановые балки и подстропильные конструкции. Они обеспечивают устойчивость рам и воспринимают нагрузки от ветра, действующего на стены здания и фонари, а также нагрузки от кранов.

Составные элементы каркаса одноэтажных промышленных зданий

Как пример однопролетное здание, оборудованное мостовым краном (рис.1).

В состав каркаса входят следующие основные элементы:

    Колонны, расположенные с шагом Ш вдоль здания; основное назначение колонн поддерживать подкрановые балки и покрытие.

Несущие конструкции покрытия (стропильные* балки или фермы), которые опираются непосредственно на колонны (если их шаг совпадает с шагом колонн) и образуют вместе с ними поперечные рамы каркаса.

Читать еще:  Что такое оцилиндрованное бревно

Если шаг несущих конструкций покрытия не совпадает с шагом колонн (например, 6 и 12 м), в состав каркаса вводят расположенные в продольных плоскостях подстропильные конструкции (также в виде балок или ферм), поддерживающие промежуточные несущие конструкции покрытия, расположенные между колоннами ( рис.1,б).

В некоторых (редких) случаях в состав каркаса вводятся прогоны, опирающиеся на несущие конструкции покрытия и располагаемые на расстояниях 1,5 или 3 м.

Подкрановые балки, опирающиеся на колонны и несущие пути мостовых кранов. В зданиях с подвесными или напольными кранами подкрановые балки не нужны.

Фундаментные балки, опирающиеся на фундаменты колонн и поддерживающие наружные стены здания.

Обвязочные балки, опирающиеся на колонны и поддерживающие отдельные ярусы наружной стены (если она не по всей своей высоте опирается на фундаментные балки).

  • При расстоянии между основными колоннами каркаса, в плоскостях наружных стен 12 м и более, а также в торцах здания устанавливают вспомогательные колонны (фахверк), облегчающие конструкцию стен.

  • Рис. 1. Каркас одноэтажного однопролетного здания (схема):

    а — при одинаковом шаге колонн и несущих конструкций покрытия; б — при неодинаковом шаге колонн и несущих конструкций покрытия; 1 — колонны; 2 — несущие конструкции покрытия; 3 — подстропильные конструкции; 4 —- прогоны; 5 — подкрановые балки; 6 — фундаментные балки; 7 — обвязочные балки; в — продольные связи колонн; 9 — продольные вертикальные связи покрытия; 10 — поперечные горизонтальные связи покрытия; 11 — продольные горизонтальные связи покрытия.

    В стальных каркасах обвязочные балки также относят к фахверку (рис. 2, а). Каркас в целом должен надежно и устойчиво работать под действием крановых, ветровых и других нагрузок.

    Рис. 2 Схемы фахверка

    а — фахверк продольной стены, б — торцовой фахверк, 1 — основные колонны, 2 — колонны фахверка, 3 — ригель фахверка, 4 — ферма покрытия

    Вертикальные нагрузки Р от мостового крана (рис.3), передаваемые через подкрановые балки на колонны с большим эксцентриситетом, вызывают внецентренное сжатие тех колонн, против которых расположен в данный момент мост крана.

    Рис. 3. Схема мостового крана

    1 — габарит крана, 2 — тележка, 3 — мост крана, 4 — крюк, 5 — колесо крана; 6 — крановый рельс; 7 — подкрановая балка; 8 — колонна

    Торможение тележки мостового крана при ее движении вдоль кранового моста (поперек пролета) создает горизонтальные поперечные тормозные силы Т1 действующие на те же колонны.

    Торможение мостового крана в целом при его движении вдоль пролета создает продольные тормозные силы Т2, действующие вдоль рядов колонн. При грузоподъемности мостовых кранов, достигающей 650 т и выше, передаваемые ими на каркас нагрузки бывают очень велики. Подвесные краны движутся по путям, подвешенным к несущим конструкциям покрытия, и через них передают свои нагрузки на колонны.

    Ветровые нагрузки при различных направлениях ветра могут действовать на каркас как в поперечном, так и в продольном направлениях.

    Для обеспечения устойчивости отдельных элементов каркаса в процессе его монтажа и совместной пространственной их работы при воздействии на каркас различных нагрузок в состав каркаса вводят связи.

    Основные виды связей каркаса одноэтажных зданий

    1. Продольные связи колонн, обеспечивающие их устойчивость и совместную работу в продольном направлении при продольном торможении крана и продольном действии ветра, устанавливаются в конце или посередине длины каркаса.

    Устойчивость остальных колонн в продольной плоскости достигается креплением их к связевым колоннам горизонтальными продольными элементами каркаса (подкрановыми балками, обвязочными балками или специальными распорками).

    Связи этого вида могут иметь различную схему в зависимости от требований, предъявляемых к проектируемому зданию. Самыми простыми являются крестовые связи (рис. 4, а). В тех случаях, когда они мешают установке оборудования или врезаются в габарит проезда (рис. 4, б), их заменяют портальными связями.

    В бескрановых зданиях небольшой высоты такие связи не нужны. Работа колонн в поперечном направлении во всех случаях обеспечивается большими в этом направлении размерами их поперечного сечения и жестким креплением их к фундаментам.

    Рис.4. Схема вертикальных связей по колоннам. 1 — колонны, 2 — покрытие, 3 — связи, 4 — проезд

    2. Продольные вертикальные связи покрытия, обеспечивающие устойчивость вертикального положения несущих конструкций (ферм) покрытия на колоннах, поскольку крепление их к колоннам считается шарнирным, располагаются по концам каркаса. Устойчивость остальных ферм достигается креплением их к связевым фермам горизонтальными распорками.

    3. Поперечные горизонтальные связи, обеспечивающие устойчивость верхнего сжатого пояса ферм против продольного изгиба, располагаются по концам каркаса и образуются путем объединения верхних поясов двух соседних ферм в единую конструкцию, жесткую в горизонтальной плоскости. Устойчивость верхних поясов остальных ферм достигается креплением их к связевым фермам в плоскости верхнего пояса при помощи распорок (или ограждающих элементов покрытия) .

    4. Продольные горизонтальные связи покрытия, располагаемые вдоль наружных стен в уровне нижнего пояса ферм.

    Все три вида связей покрытия имеют целью объединить отдельные плоские несущие элементы покрытия, жесткие только в вертикальной плоскости, в единую неизменяемую пространственную конструкцию, воспринимающую местные горизонтальные нагрузки от кранов, нагрузки от ветра и распределяющую их между колоннами каркаса.

    Каркасы одноэтажных промышленных зданий возводят чаще всего из сборного железобетона, стальные конструкции допускаются лишь при наличии особенно больших нагрузок, пролетов или других условий, делающих нецелесообразным применение железобетона. Расход стали в железобетонных конструкциях меньше, чем в стальных: в колоннах — в 2,5-3 раза; в фермах покрытия— в 2-2,5 раза. Виды промзданий в один этаж подробнее здесь.

    Однако стоимость стальных и железобетонных конструкций одинакового назначения отличается незначительно и в настоящее время каркасы делают в основном стальные.

    Описанный выше комплекс связей в наиболее полной и четкой форме встречается в стальных каркасах, отдельные элементы которых имеют особенно малую жесткость. Более массивные элементы железобетонных каркасов имеют и большую жесткость. Поэтому в железобетонных каркасах отдельные виды связей могут отсутствовать. Например, в здании без фонарей, с несущими конструкциями покрытия в виде балок и настилом из крупнопанельных плит связи в покрытии не делают.

    В монолитных железобетонных каркасах (которые в отечественной практике встречаются очень редко) жесткое соединение элементов каркаса в узлах и большая массивность элементов делают все виды связей ненужными.

    Связи чаще всего делают металлические — из прокатных профилей. В железобетонных каркасах встречаются и железобетонные связи, в основном в виде распорок.

    Каркас многопролетного здания отличается от каркаса однопролетного здания в первую очередь наличием внутренних средних колонн, поддерживающих покрытие и подкрановые балки. Фундаментные балки по внутренним рядам колонн устанавливают только для опирания внутренних стен, а обвязочные — при большой их высоте. Связи проектируются по тем же принципам, что и в однопролетных зданиях.

    При сезонных колебаниях температуры конструкции каркаса испытывают температурные деформации, которые при большой длине каркаса и значительном температурном перепаде могут быть весьма существенными. Например, при длине каркаса 100 м, коэффициенте линейного расширения α = 0,00001 и температурном перепаде 50° (от +20° летом до —30° зимой), т. е. для конструкций, находящихся на открытом воздухе, деформация равна 100 • 0,00001 • 50 = 0,05 м — 5 см.

    Свободным деформациям горизонтальных элементов каркаса препятствуют колонны, жестко закрепленные к фундаментам.

    Во избежание появления в конструкциях значительных напряжений от этой причины, каркас делят в надземной части температурными швами на отдельные самостоятельные блоки.

    Расстояния между температурными швами каркаса по длине и ширине здания выбирают так, чтобы можно было не считаться с усилиями, возникающими в элементах каркаса от климатических колебаний температуры.
    Предельные расстояния между температурными швами для каркасов из различных материалов установлены СНиПом в пределах от 30 м (открытые монолитные железобетонные конструкции) до 150 м (стальной каркас отапливаемых зданий).

    Температурный шов, плоскость которого расположена перпендикулярно к пролетам здания, называется поперечным, шов, разделяющий два смежных пролета — продольным.

    Конструктивное выполнение температурных швов бывает различное. Поперечные швы всегда осуществляются путем установки парных колонн, продольные швы выполняются как путем установки парных колонн (рис. 5, а), так и путем устройства подвижных опор (рис. 5, б), обеспечивающих независимую деформацию, конструкций покрытия соседних, температурных блоков. В каркасах, разделенных температурными швами на отдельные блоки, связи устанавливают в каждом блоке, как в самостоятельном каркасе.

    Рис.5. Варианты продольного температурного шва

    а — с двумя колоннами, б — с подвижной опорой, 1 — балки, 2 — столик, 3 — колонна, 4 — каток

    К каркасу относят также несущие конструкции рабочих площадок, которые бывают необходимы внутри основного объема здания (если они связаны с основными конструкциями здания).

    Конструкции рабочих площадок состоят из колонн и опирающихся на них перекрытий. В зависимости от технологических требований рабочие площадки могут располагаться на одном или нескольких уровнях (рис. 6).

    Рис. 6. Многоярусная рабочая площадка.

    Таким образом, при строительстве одноэтажных и многоэтажных промышленных зданий в качестве несущей принимается, как правило, каркасная система. Каркас позволяет наилучшим образом организовать рациональную планировку производственного здания (получить большепролетные пространства, свободные от опор) и наиболее приемлем для восприятия значительных динамических и статических нагрузок, которым подвержено промышленное здание в процессе эксплуатации.

    Видео — поэтапная сборка металоконструкций

    Ссылка на основную публикацию
    Adblock
    detector